5,000 research outputs found

    Sneutrino as Lightest Supersymmetric Particle in B3 mSUGRA Models and Signals at the LHC

    Full text link
    We consider B3 mSUGRA models where we have one lepton number violating LQD operator at the GUT scale. This can alter the supersymmetric mass spectrum leading to a sneutrino as the lightest supersymmetric particle in a large region of parameter space. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b -> s gamma and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron and the CERN p\bar p collider. We then give examples for characteristic signatures at the LHC.Comment: 22 pages, 11 figure

    From imaginary to real chemical potential QCD with functional methods

    Full text link
    We investigate the quality of the extrapolation procedure employed in Ref. [1] to extract the crossover line at real chemical potential from lattice data at imaginary potential. To this end we employ a functional approach that does not suffer from the sign problem. We utilize a well-studied combination of lattice Yang--Mills theory with a truncated set of Dyson--Schwinger equations in Landau gauge for 2+12 + 1 quark flavors. This system predicts a critical endpoint at moderate temperatures and rather large (real) chemical potential with a curvature comparable to recent lattice extrapolations. We determine the light quark condensate and chiral susceptibility at imaginary chemical potentials and perform an analytic continuation along the lines described in [1]. We find that the analytically continued crossover line agrees very well (within one percent) with the explicitly calculated one for chemical potentials up to about 80 % of the one of the critical end point. The method breaks down in the region where the chiral susceptibility as a function of the condensate cannot any longer be well described by a polynomial.Comment: 7 pages, 5 figure

    Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO<sub>2 </sub>producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO<sub>2 </sub>levels decreased.</p> <p>Presentation of the hypothesis</p> <p>We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of <it>in vitro</it>-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH.</p> <p>Testing the hypothesis</p> <p>We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: <it>(i) </it>non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and <it>(ii) </it>specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme.</p> <p>Implications of the hypothesis</p> <p>Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The ability of RNA to form protonated base pairs and triples at acidic pH suggests that standard base pairing may not have been a dominant requirement of the early RNA world.</p> <p>Reviewers</p> <p>This article was reviewed by Eugene Koonin, Anthony Poole and Charles Carter (nominated by David Ardell).</p

    Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transfer RNA (tRNA) is the means by which the cell translates DNA sequence into protein according to the rules of the genetic code. A credible proposition is that tRNA was formed from the duplication of an RNA hairpin half the length of the contemporary tRNA molecule, with the point at which the hairpins were joined marked by the canonical intron insertion position found today within tRNA genes. If these hairpins possessed a 3'-CCA terminus with different combinations of stem nucleotides (the ancestral operational RNA code), specific aminoacylation and perhaps participation in some form of noncoded protein synthesis might have occurred. However, the identity of the first tRNA and the initial steps in the origin of the genetic code remain elusive.</p> <p>Results</p> <p>Here we show evidence that glycine tRNA was the first tRNA, as revealed by a vestigial imprint in the anticodon loop sequences of contemporary descendents. This provides a plausible mechanism for the missing first step in the origin of the genetic code. In 448 of 466 glycine tRNA gene sequences from bacteria, archaea and eukaryote cytoplasm analyzed, CCA occurs immediately upstream of the canonical intron insertion position, suggesting the first anticodon (NCC for glycine) has been captured from the 3'-terminal CCA of one of the interacting hairpins as a result of an ancestral ligation.</p> <p>Conclusion</p> <p>That this imprint (including the second and third nucleotides of the glycine tRNA anticodon) has been retained through billions of years of evolution suggests Crick's 'frozen accident' hypothesis has validity for at least this very first step at the dawn of the genetic code.</p> <p>Reviewers</p> <p>This article was reviewed by Dr Eugene V. Koonin, Dr Rob Knight and Dr David H Ardell.</p

    The transition from noncoded to coded protein synthesis: did coding mRNAs arise from stability-enhancing binding partners to tRNA?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the origin of protein synthesis has been notoriously difficult. We have taken as a starting premise Wolf and Koonin's view that "evolution of the translation system is envisaged to occur in a compartmentalized ensemble of replicating, co-selected RNA segments, i.e., in an RNA world containing ribozymes with versatile activities".</p> <p>Presentation of the hypothesis</p> <p>We propose that coded protein synthesis arose from a noncoded process in an RNA world as a natural consequence of the accumulation of a range of early tRNAs and their serendipitous RNA binding partners. We propose that, initially, RNA molecules with 3' CCA termini that could be aminoacylated by ribozymes, together with an ancestral peptidyl transferase ribozyme, produced small peptides with random or repetitive sequences. Our concept is that the first tRNA arose in this context from the ligation of two RNA hairpins and could be similarly aminoacylated at its 3' end to become a substrate for peptidyl transfer catalyzed by the ancestral ribozyme. Within this RNA world we hypothesize that proto-mRNAs appeared first simply as serendipitous binding partners, forming complementary base pair interactions with the anticodon loops of tRNA pairs. Initially this may have enhanced stability of the paired tRNA molecules so they were held together in close proximity, better positioning the 3' CCA termini for peptidyl transfer and enhancing the rate of peptide synthesis. If there were a selective advantage for the ensemble through the peptide products synthesized, it would provide a natural pathway for the evolution of a coding system with the expansion of a cohort of different tRNAs and their binding partners. The whole process could have occurred quite unremarkably for such a profound acquisition.</p> <p>Testing the hypothesis</p> <p>It should be possible to test the different parts of our model using the isolated contemporary 50S ribosomal subunit initially, and then with RNAs transcribed <it>in vitro </it>together with a minimal set of ribosomal proteins that are required today to support protein synthesis.</p> <p>Implications of the hypothesis</p> <p>This model proposes that genetic coding arose <it>de novo </it>from complementary base pair interactions between tRNAs and single-stranded RNAs present in the immediate environment.</p> <p>Reviewers</p> <p>This article was reviewed by Eugene Koonin, Rob Knight and Berthold Kastner (nominated by Laura Landweber).</p

    Enhancing the Performance of the T-Peel Test for Thin and Flexible Adhered Laminates

    Get PDF
    Symmetrically bonded thin and flexible T-peel specimens, when tested on vertical travel machines, can be subject to significant gravitational loading; with the associated asymmetry and mixed-mode failure during peeling. This can cause erroneously high experimental peel forces to be recorded which leads to uncertainty in estimating interfacial fracture toughness and failure mode. To overcome these issues, a mechanical test fixture has been designed for use with vertical test machines, that supports the unpeeled portion of the test specimen and suppresses parasitic loads due to gravity from affecting the peel test. The mechanism, driven by the test machine cross-head, moves at one-half of the velocity of the cross-head such that the unpeeled portion always lies in the plane of the instantaneous center of motion. Several specimens such as bonded polymeric films, laminates, and commercial tapes were tested with and without the fixture, and the importance of the proposed T-peel procedure has been demonstrated

    Critical Endpoint of QCD and Baryon Number Fluctuations in a Finite Volume

    Full text link
    We summarize recent results on the volume dependence of the location of the critical endpoint in the QCD phase diagram. To this end, we employ a sophisticated combination of Lattice Yang--Mills theory and a (truncated) version of Dyson--Schwinger equations in Landau gauge for 2+12 + 1 quark flavours. We study this system at small and intermediate volumes and determine the dependence of the location of the critical endpoint on the boundary conditions and the volume of a three-dimensional cube with edge length LL. We also discuss recent results on baryon number fluctuations in this setup.Comment: 5 pages, 2 figures; contribution to the proceedings of the FAIR next generation scientists workshop (FAIRNESS), 7th edition, 23-27 May 2022, Paralia (Pieria, Greece

    Finite-volume effects in baryon number fluctuations around the QCD critical endpoint

    Full text link
    We present results for the volume dependence of baryon number fluctuations in the vicinity of the (conjectured) critical endpoint of QCD. They are extracted from the nonperturbative quark propagator that is obtained as a solution to a set of truncated Dyson-Schwinger equations of (2+1)-flavor QCD in Landau gauge, which takes the backcoupling of quarks onto the Yang-Mills sector explicitly into account. This well-studied system predicts a critical endpoint at moderate temperatures and rather large chemical potential. We investigate this system at small and intermediate finite, three-dimensional, cubic volumes and study the resulting impact on baryon number fluctuations and ratios thereof up to fourth order around the critical endpoint. We find that the fluctuations are visibly affected by the finite volume, particularly for antiperiodic boundary conditions, whereas their ratios are practically invariant.Comment: 7 pages, 5 figure
    corecore